As the name implies a d&b audiotechnik system is not just a loudspeaker. Nor is it merely a sum of the components: loudspeakers, amplifiers, signal processors, networking, software and accessories. Right from the outset the d&b audiotechnik approach was to build integrated sound reinforcement systems that actually are more than the combination of parts: an entirety where each fits all. Every element is tightly specified, precisely aligned and carefully matched to achieve maximum efficiency. For ease of use, all the user-definable parameters are incorporated, allowing the possibility of adjustment, either directly, via remote control surfaces, or integrated within wider networks. Neutral sound characteristics leave the user all the freedom needed to realize whatever the brief. At the same time d&b offers finance, service and support, a knowledgeable distribution network, education and training as well as technical information, so the same optimal acoustic result is achieved consistently by every system anywhere, at any time. In reality: the d&b System reality.
The **T-Series** offers two different loudspeaker technologies in one package delivering considerable performance as the smallest d&b line array and with a twist transforming into a stand-alone point source system. A fusion of techniques is used to deliver exemplary directivity control for situations where gain before feedback is an absolute requirement. These encompass dipolar low frequency driver arrangements, high excursion drivers and a unique combination of rotatable horn and acoustic lens. The broad application scope of the T-Series ranges from small to medium sized applications. The unobtrusive visual design, compact dimensions, high power and exemplary directivity performance makes the T-Series loudspeakers a good choice in many theatres, musicals, conference and presentation situations, live television and orchestral shows. The **T loudspeakers** integrate specially designed unobtrusive rigging and mounting allowing quick and simple deployment in changing environments with the clear perspective to provide mobile, flexible, configurable sound solutions. The **Ti loudspeakers** differ only in cabinet construction and mounting hardware. They are intended for permanently installed performance spaces where the specification is rider driven by the artist or mix engineer’s preferences. The Ti cabinets and mounting hardware are mechanically adapted for installation use, are weather protected for climatically hostile environments and can be colour matched to interior designs.
The T-Series

The 2-way passive T10 may be deployed in multiples as line array that maintains horizontal constant directivity down to approximately 600 Hz or as a high directivity point source loudspeaker. Accurate control of horizontal directivity is further enhanced by a large frequency overlap through the crossover range, while adoption for line source or point source orientation is achieved without the use of any tools. The T10 HF driver is fitted to a waveguide horn producing vertical line source directivity. Rotation of the horn by 90° produces an accurate point source dispersion transforming a vertically oriented T10 into a stand-alone full range loudspeaker. When the T10 is deployed upright as a point source, the vertical directivity control extends approximately one octave lower than similarly sized biaxial loudspeakers.

The installation specific T110L and T110P share the same characteristics, with different versions designed for varied applications: the T110L loudspeaker is used in multiples as elements of line arrays and incorporates appropriate rigging, whilst the T110P is used as a point source standalone loudspeaker without the line array hardware.

The T and Ti are actively driven bass-reflex subwoofers utilizing a long excursion 15” neodymium driver, sharing the same width and integrated rigging fittings as the T10 and T110L respectively. They are used to increase the low frequency range, while adaption for line source or point source orientation is achieved without the use of any tools. The T10 HF driver is fitted to a waveguide horn producing vertical line source directivity. Rotation of the horn by 90° produces an accurate point source dispersion transforming a vertically oriented T10 into a stand-alone full range loudspeaker. When the T10 is deployed upright as a point source, the vertical directivity control extends approximately one octave lower than similarly sized biaxial loudspeakers.

All T loudspeakers are finished with a PCP (Polyurea Cabinet Protection) coating that provides mobile systems with protection against impact and resistance to the adverse effects on cabinets caused by changing ambient outdoor conditions.

The d&b software offering aides the entire system setup process. The d&b ArrayCalc simulation software allows the virtual optimization of loudspeaker line arrays, point source and column loudspeakers as well as subwoofers and their adjustment to venue conditions. The d&b NoizCalc immission modelling software uses international standards to model noise immission from d&b loudspeaker systems. NoizCalc takes data from d&b NoizCalc immission modelling software and calculates the sound propagation towards the far field. The complete system configuration simulated in ArrayCalc is assimilated by the d&b R1 Remote control software into an intuitive graphical user interface to manage the amplifiers, and loudspeakers, from anywhere in the venue. The R90 touchscreen remote control provides quick, reliable, and effortless operation of day-to-day functions of a preconfigured d&b system, without needing expert level knowledge of audio.

ArrayCalc and calculates the sound propagation towards the far field. The complete system configuration simulated in ArrayCalc is assimilated by the d&b R1 Remote control software into an intuitive graphical user interface to manage the amplifiers, and loudspeakers, from anywhere in the venue. The R90 touchscreen remote control provides quick, reliable, and effortless operation of day-to-day functions of a preconfigured d&b system, without needing expert level knowledge of audio.

A wide range of tools and data files are available to support the planning process using external tools. For enhanced acoustic simulations, all loudspeakers offer EASE files. The planning process using BIM (Building Information Modelling) is supported with Revit files available for all loudspeakers and accessories, creating accurate project data and visualisation. Additionally, our 2D and 3D CAD data is usable in most common planning tools. Venue data created by SketchUp can be imported to ArrayCalc using the d&b sketchup plug-in to facilitate system design.

d&b amplifiers are specifically designed for use with d&b loudspeakers, and are at the heart of the d&b system approach. These devices contain extensive Digital Signal Processing capabilities to provide comprehensive loudspeaker management and specific switchable filter functions to precisely target the system response for a wide variety of applications. The four channel D20 amplifier is intended for both mobile and installation applications requiring the highest Sound Pressure Levels. The installation specific four channel 30D amplifier is intended for permanent integration within venues which require medium to high Sound Pressure Levels. These amplifiers all provide extensive user-definable equalization containing two 16-band equalizers with parametric, notch, shelving and asymmetric filters as well as delay capabilities of up to 10 seconds.

The d&b Audio network bridges interface between audio transport networks and AES3 digital audio signals while also providing distribution of Ethernet control data. The DS10 supports Dante networks, while the DS20 is used for the open standards-based Milan protocol.

The DS100 Signal Engine is based on a specialized eight core multi-core 3 RU audio processor with Audinate Dante networking. It provides a 64 x 64 audio matrix with level and delay adjustments at all cross points. Additional software modules provide dynamic source positioning and emulated acoustics functions.
The T10 loudspeaker

The T10 loudspeaker is a passive 2-way design that houses 2 x 6.5" drivers, a 1.4" exit HF compression driver and can be either used as a line source or high directivity point source loudspeaker. The very compact loudspeaker design is a unique combination of a rotatable waveguide with horn and an acoustic lens. The horn can easily be rotated from outside the loudspeaker without tools or removing the front grill. This is achieved through apertures at the cabinet sides which allow rotation to both the line and point source positions. The T10 provides a vertical line source with a 90° horizontal dispersion that is maintained down to approximately 600 Hz, whilst the integrated lens in the front grill widens the HF dispersion in line array mode to 105°. When the loudspeaker is used upright as a point source, the lens curves the wave front of the line source providing a 90° x 35° dispersion pattern. The two 6.5" neodymium LF drivers are positioned in a dipolar arrangement providing an exceptional dispersion control even at lower frequencies.

The T10 cabinet is constructed from polyurethane integral hard foam with an impact resistant finish and has integrated line array rigging hardware. The front of the loudspeaker cabinet is protected by a rigid metal grill backed by an acoustically transparent foam.

System data

- Frequency response (–5 dB standard) 68 Hz - 18 kHz
- Frequency response (–5 dB CUT mode) 120 Hz - 18 kHz
- Max. sound pressure (Line/Arc setup • PS setup, 1 m, free field) with D6/10D 129 • 127 dB
 - with D20/30D 132 • 130 dB
 - with D80 132 • 130 dB
- Input level (100 dB SPL/1 m) –13 dBu

Loudspeaker data

- Nominal impedance 16 ohms
- Power handling capacity (RMS/peak 10 msec) 200/800 W
- Nominal dispersion angle (line source, horizontal) 105°
- Nominal dispersion angle (point source, h x v) 90° x 35°
- Components: 2 x 6.5" driver with neodymium magnet, 1.4" exit compression driver on rotatable waveguide, passive crossover network
- Connections: 2 x NL4 F/M, optional 2 x EP5 or 2 x NL4
- Weight 11 kg (24 lb)

1 Broadband measurement, pink noise, crest factor 4, peak measurement, linear weighting
2 Dispersion angle in frequency plotted using lines of equal sound pressure (isobars) at –6 dB and –12 dB
The Ti10L loudspeaker

The Ti10L loudspeaker is the installation version of the T10 for deployment as a line array loudspeaker. Road and installation versions differ only in the rigging hardware.

The Ti10L cabinet is a passive 2-way design that houses 2 x 6.5" drivers and a 1.4" exit HF compression driver. The very compact loudspeaker design is a unique combination of a rotatable waveguide with horn and an acoustic lens. It provides a vertical line source with a 90° horizontal dispersion that is maintained down to approximately 600 Hz, whilst the integrated lens in the front grill widens the HF dispersion in line array mode to 105°.

The Ti10L cabinet is constructed from polyurethane integral hard foam with an impact resistant finish and has integrated line array rigging hardware which, once deployed, is fundamentally invisible when viewed from the front. The front of the loudspeaker cabinet is protected by a rigid metal grill backed by an acoustically transparent foam.

System data

Frequency response [-5 dB standard] 68 Hz - 18 kHz
Frequency response [-5 dB CUT mode] 120 Hz - 18 kHz
Max. sound pressure (1 m, free field) 129 dB
with D6/100 ... 129 dB
with D20/300 ... 132 dB
Input level (100 dB SPL/1 m) –13 dB

Loudspeaker data

Nominal impedance ... 16 ohms
Power handling capacity (RMS/peak 10 msec) 200/800 W
Nominal dispersion angle [h] 105°
Components .. 2 x 6.5" driver with neodymium magnet
... 1.4" exit compression driver on rotatable waveguide
... passive crossover network
Connections .. 2 x NL4
Weight .. 11 kg (24 lb)

The Ti10P loudspeaker

The Ti10P loudspeaker is the installation version of the T10 for deployment as a point source loudspeaker. Road and installation versions differ only in the mounting hardware.

The Ti10P cabinet is a passive 2-way design that houses 2 x 6.5" drivers and a 1.4" exit HF compression driver and can be used either in horizontal or vertical orientation. The very compact loudspeaker design is a unique combination of a rotatable waveguide with horn and an acoustic lens. The horn can easily be rotated from outside the loudspeaker without tools or removing the front grill. This is achieved through apertures at the cabinet sides which allow rotation to both vertical or horizontal setup. It provides a vertical line source with a 90° horizontal dispersion that is maintained down to approximately 600 Hz, whilst the integrated lens in the front grill widens the HF dispersion in horizontal setup to 105°.

The Ti10P cabinet is constructed from polyurethane integral hard foam with an impact resistant finish and has integrated threads for attaching installation hardware. The front of the loudspeaker cabinet is protected by a rigid metal grill backed by an acoustically transparent foam.

System data

Frequency response [-5 dB standard] 68 Hz - 18 kHz
Frequency response [-5 dB CUT mode] 120 Hz - 18 kHz
Max. sound pressure (1 m, free field) 127 dB
with D6/100 ... 127 dB
with D20/300 ... 130 dB
Input level (100 dB SPL/1 m) –13 dB

Loudspeaker data

Nominal impedance ... 16 ohms
Power handling capacity (RMS/peak 10 msec) 200/800 W
Nominal dispersion angle [h x v] 90° x 35°
Components .. 2 x 6.5" driver with neodymium magnet
... 1.4" exit compression driver on rotatable waveguide
... passive crossover network
Connections .. 2 x NL4
Weight .. 10 kg (23 lb)
The T subwoofer
The Ti subwoofer

T and Ti subwoofers
The T and Ti-SUB are actively driven bass-reflex designs housing a long excursion 15” driver with a neodymium magnet. They can be used to supplement the LF headroom of the T and Ti loudspeakers in various combinations, ground stacked or flown, either integrated on top of an array or as a separate column. They can also supplement the T10 and Ti10 loudspeakers respectively in ground stacked applications where the SUbs can mechanically support them.

The cabinets are mechanically connected using rigging links on both sides of the cabinet front which slide out when needed, and with a central splay link at the rear of the cabinet. All necessary rigging components are mounted to the cabinet. The T and Ti-SUB cabinets are constructed from marine plywood and have an impact resistant paint finish. The T-SUB cabinet has a handle mounted in the top panel. The front of the loudspeaker cabinets are protected by a rigid metal grill in front of an acoustically transparent foam.

System data
Frequency response [-5 dB standard] 47 - 140 Hz
Frequency response [-5 dB 100 Hz model] 47 - 100 Hz
Max. sound pressure (single cabinet, 1 m, free field) 127 dB
with D6/100 .. 130 dB
with D20/30D .. 130 dB
with D80 .. 130 dB

Loudspeaker data
Nominal impedance .. 8 ohms
Power handling capacity (RMS/peak 10 msec) 300/1600 W
Components .. 15” driver with neodymium magnet
Connections T-SUB .. 2 x NL4 F/M
optional 2 x EPS or 2 x NL4
Connections Ti-SUB .. 2 x NL4
Weight .. 17 kg (37 lb)

The B4 subwoofer
The B4-SUB is an actively driven cardioid subwoofer powered by a single amplifier channel. It houses two long excursion neodymium drivers in an integrated cardioid setup: a 15” driver in a bass-reflex design facing to the front and a 12” driver in a two chamber bandpass design radiating to the rear. The cardioid dispersion pattern resulting from this arrangement unloads energy behind the system that greatly reduces the excitation of the reverberant field at low frequencies and provides the greatest accuracy of low frequency reproduction. The B4 subwoofer can only be used in a ground stacked configuration. The B4-SUB cabinet is constructed from marine plywood and has an impact and weather resistant paint finish and a pair of handles. An M20 threaded flange in the top panel accepts the d&b Loudspeaker stand winder M20. The front of the loudspeaker cabinet is protected by a rigid metal grill backed by an acoustically transparent foam. Two runners extend from the rear to the front panel of the cabinet protecting the bottom panel against scratching. Two correspondingly shaped recesses are incorporated in the top panel of each cabinet that accept these runners to prevent cabinet movement when stacked.

System data
Frequency response [-5 dB standard] 40 - 150 Hz
Frequency response [-5 dB 100 Hz model] 40 - 100 Hz
Max. sound pressure (1 m, free field) 128 dB
with D6/100 .. 131 dB
with D20/30D .. 131 dB
with D80 .. 131 dB

Loudspeaker data
Nominal impedance .. 6 ohms
Power handling capacity (RMS/peak 10 msec) 500/2000 W
Components .. 15”/12” driver
Connections .. 2 x NL4 F/M
optional 2 x EPS or 2 x NL4
Weight .. 44 kg (97 lb)

1 Broadband measurement, pink noise, crest factor 4, peak measurement, linear weighting

The T subwoofer
The Ti subwoofer

T and Ti subwoofers
The T and Ti-SUB are actively driven bass-reflex designs housing a long excursion 15” driver with a neodymium magnet. They can be used to supplement the LF headroom of the T and Ti loudspeakers in various combinations, ground stacked or flown, either integrated on top of an array or as a separate column. They can also supplement the T10 and Ti10 loudspeakers respectively in ground stacked applications where the SUbs can mechanically support them.

The cabinets are mechanically connected using rigging links on both sides of the cabinet front which slide out when needed, and with a central splay link at the rear of the cabinet. All necessary rigging components are mounted to the cabinet. The T and Ti-SUB cabinets are constructed from marine plywood and have an impact resistant paint finish. The T-SUB cabinet has a handle mounted in the top panel. The front of the loudspeaker cabinets are protected by a rigid metal grill in front of an acoustically transparent foam.

System data
Frequency response [-5 dB standard] 47 - 140 Hz
Frequency response [-5 dB 100 Hz model] 47 - 100 Hz
Max. sound pressure (single cabinet, 1 m, free field) 127 dB
with D6/100 .. 130 dB
with D20/30D .. 130 dB
with D80 .. 130 dB

Loudspeaker data
Nominal impedance .. 8 ohms
Power handling capacity (RMS/peak 10 msec) 300/1600 W
Components .. 15” driver with neodymium magnet
Connections T-SUB .. 2 x NL4 F/M
optional 2 x EPS or 2 x NL4
Connections Ti-SUB .. 2 x NL4
Weight .. 17 kg (37 lb)
Safety approval

d&b loudspeakers and accessories are designed for setup and use within situations requiring compliance with the provisions and directives of the DGUV regulation 17 (formerly BGV C1).

The T-Series rigging and mounting accessories

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z5370</td>
<td>T Flying frame 3 x 251.60 G Load adapter supplied with each T Flying frame</td>
</tr>
<tr>
<td>Z5374</td>
<td>Ti Flying bar</td>
</tr>
<tr>
<td>Z5371</td>
<td>T Flying bracket</td>
</tr>
<tr>
<td>Z5372</td>
<td>T Horizontal bracket</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Cluster bracket for up to 3 x T10/T10L</td>
</tr>
<tr>
<td>Z5355</td>
<td>E8/E12 Flying adapter link</td>
</tr>
<tr>
<td>Z5010</td>
<td>TV Spigot with fixing plate</td>
</tr>
<tr>
<td>Z5024</td>
<td>Loudspeaker stand adapter</td>
</tr>
<tr>
<td>Z5034</td>
<td>Stand adapter M10</td>
</tr>
<tr>
<td>Z5012</td>
<td>Pipe clamp for TV Spigot for a tube diameter up to 70 mm/2.75"</td>
</tr>
<tr>
<td>Z5147</td>
<td>Rota clamp WLL: 1000 kg (2204 lb) for a tube diameter up to 51 mm/2"</td>
</tr>
<tr>
<td>Z5155</td>
<td>T/Q Hoist connector chain</td>
</tr>
<tr>
<td>66057</td>
<td>1t Shackle</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Cluster bracket for up to 3 x T10/T10L</td>
</tr>
<tr>
<td>Z5374</td>
<td>Ti Flying bar</td>
</tr>
<tr>
<td>Z5371</td>
<td>T Flying bracket</td>
</tr>
<tr>
<td>Z5372</td>
<td>T Horizontal bracket</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Cluster bracket for up to 3 x T10/T10L</td>
</tr>
<tr>
<td>Z5355</td>
<td>E8/E12 Flying adapter link</td>
</tr>
<tr>
<td>Z5010</td>
<td>TV Spigot with fixing plate</td>
</tr>
<tr>
<td>Z5024</td>
<td>Loudspeaker stand adapter</td>
</tr>
<tr>
<td>Z5034</td>
<td>Stand adapter M10</td>
</tr>
<tr>
<td>Z5012</td>
<td>Pipe clamp for TV Spigot for a tube diameter up to 70 mm/2.75"</td>
</tr>
<tr>
<td>Z5147</td>
<td>Rota clamp WLL: 1000 kg (2204 lb) for a tube diameter up to 51 mm/2"</td>
</tr>
<tr>
<td>Z5155</td>
<td>T/Q Hoist connector chain</td>
</tr>
<tr>
<td>66057</td>
<td>1t Shackle</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Base plate for T10 with B4 and Q-SUB only</td>
</tr>
<tr>
<td>Z5374</td>
<td>Ti Flying bar</td>
</tr>
<tr>
<td>Z5371</td>
<td>T Flying bracket</td>
</tr>
<tr>
<td>Z5372</td>
<td>T Horizontal bracket</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Cluster bracket for up to 3 x T10/T10L</td>
</tr>
<tr>
<td>Z5355</td>
<td>E8/E12 Flying adapter link</td>
</tr>
<tr>
<td>Z5010</td>
<td>TV Spigot with fixing plate</td>
</tr>
<tr>
<td>Z5024</td>
<td>Loudspeaker stand adapter</td>
</tr>
<tr>
<td>Z5034</td>
<td>Stand adapter M10</td>
</tr>
<tr>
<td>Z5012</td>
<td>Pipe clamp for TV Spigot for a tube diameter up to 70 mm/2.75"</td>
</tr>
<tr>
<td>Z5147</td>
<td>Rota clamp WLL: 1000 kg (2204 lb) for a tube diameter up to 51 mm/2"</td>
</tr>
<tr>
<td>Z5155</td>
<td>T/Q Hoist connector chain</td>
</tr>
<tr>
<td>66057</td>
<td>1t Shackle</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Base plate for T10 with B4 and Q-SUB only</td>
</tr>
<tr>
<td>Z5374</td>
<td>Ti Flying bar</td>
</tr>
<tr>
<td>Z5371</td>
<td>T Flying bracket</td>
</tr>
<tr>
<td>Z5372</td>
<td>T Horizontal bracket</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Cluster bracket for up to 3 x T10/T10L</td>
</tr>
<tr>
<td>Z5355</td>
<td>E8/E12 Flying adapter link</td>
</tr>
<tr>
<td>Z5010</td>
<td>TV Spigot with fixing plate</td>
</tr>
<tr>
<td>Z5024</td>
<td>Loudspeaker stand adapter</td>
</tr>
<tr>
<td>Z5034</td>
<td>Stand adapter M10</td>
</tr>
<tr>
<td>Z5012</td>
<td>Pipe clamp for TV Spigot for a tube diameter up to 70 mm/2.75"</td>
</tr>
<tr>
<td>Z5147</td>
<td>Rota clamp WLL: 1000 kg (2204 lb) for a tube diameter up to 51 mm/2"</td>
</tr>
<tr>
<td>Z5155</td>
<td>T/Q Hoist connector chain</td>
</tr>
<tr>
<td>66057</td>
<td>1t Shackle</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Base plate for T10 with B4 and Q-SUB only</td>
</tr>
<tr>
<td>Z5374</td>
<td>Ti Flying bar</td>
</tr>
<tr>
<td>Z5371</td>
<td>T Flying bracket</td>
</tr>
<tr>
<td>Z5372</td>
<td>T Horizontal bracket</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Cluster bracket for up to 3 x T10/T10L</td>
</tr>
<tr>
<td>Z5355</td>
<td>E8/E12 Flying adapter link</td>
</tr>
<tr>
<td>Z5010</td>
<td>TV Spigot with fixing plate</td>
</tr>
<tr>
<td>Z5024</td>
<td>Loudspeaker stand adapter</td>
</tr>
<tr>
<td>Z5034</td>
<td>Stand adapter M10</td>
</tr>
<tr>
<td>Z5012</td>
<td>Pipe clamp for TV Spigot for a tube diameter up to 70 mm/2.75"</td>
</tr>
<tr>
<td>Z5147</td>
<td>Rota clamp WLL: 1000 kg (2204 lb) for a tube diameter up to 51 mm/2"</td>
</tr>
<tr>
<td>Z5155</td>
<td>T/Q Hoist connector chain</td>
</tr>
<tr>
<td>66057</td>
<td>1t Shackle</td>
</tr>
<tr>
<td>Z5373</td>
<td>T Base plate for T10 with B4 and Q-SUB only</td>
</tr>
</tbody>
</table>

The T-Series rigging and mounting examples

1. **T10/T-SUB or Ti10L/Ti-SUB line array with Z5373 T Cluster bracket**
 - Z5370 T Flying frame
 - Z5147 Rota clamp
 - Z5012 Pipe clamp for TV Spigot
 - Z5013 M20 pole with winder
 - Z5024 Loudspeaker stand adapter

2. **T10 or Ti10L line array with Z5371 T Flying bracket**
 - Z5010 TV Spigot with fixing plate
 - Z5012 Pipe clamp for TV Spigot

3. **2 x T10 or Ti10L line array with Z5373 T Cluster bracket**
 - Z5010 TV Spigot with fixing plate
 - Z5012 Pipe clamp for TV Spigot

4. **T10 point source or Ti10P with Z5371 T Flying bracket**
 - Z5013 M20 pole with winder
 - Z5024 Loudspeaker stand adapter

5. **T10 point source or Ti10P with Z5372 T Horizontal bracket**
 - Z5013 M20 pole with winder
 - Z5024 Loudspeaker stand adapter

6. **T10 point source or Ti10P with Z5354 E8/E12 Flying adapter**
 - Z5355 E8/E12 Flying adapter link
 - Z5013 M20 pole with winder
 - Z5024 Loudspeaker stand adapter

7. **T10 point source or Ti10P with Z5374 Ti Flying bar**
 - Z5375 T Base plate for T10 with B4 and Q-SUB only

8. **T10 point source or Ti10P with Z5375 T Base plate**
 - Z5374 Ti Flying bar
 - Z5375 T Base plate for T10 with B4 and Q-SUB only

9. **T10 point source or Ti10P with Z5377 T Cluster bracket**
 - Z5012 Pipe clamp for TV Spigot
 - Z5024 Loudspeaker stand adapter

10. **T10 point source or Ti10P on E15X-SUB with Z5371 T Flying bracket**
 - Z5013 M20 pole with winder
 - Z5024 Loudspeaker stand adapter

11. **T10 point source or Ti10P on Q-SUB with Z5375 T Base plate**
 - Z5012 Pipe clamp for TV Spigot
 - Z5024 Loudspeaker stand adapter
The Ti Weather Resistant, Special Colour and Custom solutions options

Weather Resistant (WR) option
The WR option provides an IP54 rating, and enables operation of loudspeakers in changing ambient conditions, with some loudspeakers able to achieve an IP55 rating. However it is not intended to enable permanent, unprotected operation of loudspeakers outdoors. Cabinets used outdoors even with the WR option should always be aimed either horizontally or with a downward tilt. All WR speakers will be delivered without a cable. An optional WR cable (Z5763.000 - H07RN-F 2 x 2.5 mm² / AWG 13, Faston connector type 2 x 6.3 mm male) with a standard length of 5.5 m is available. Other length on request.

Special Colour (SC) option
The paint finish of all loudspeaker cabinets and most accessories can be executed in almost any custom colour in accordance with common colour tables. All rigging fittings at the rear of the cabinet, front links and locking pins remain in black. Other paint finishes such as metallic are available on request. The acoustically transparent foam fitted behind the rigid metal grill is also painted with the requested special colour.

Custom solutions (SVS and SWR) option
SVS (Variants For Stadiums) loudspeakers have no integral rigging components, but instead, have threaded inserts in their side panels. The cabinets will be mechanically supported by metal brackets specifically designed for the respective application by Custom solutions.
SWR (Sea Water Resistant) loudspeaker models are based on WR or SVS variants where available, and withstand outdoor operation in wet and acid or salty environments like on cruise ships or coastal locations. Other custom solutions are available upon request.

The T-Series cases

E7451
Touring case 4 x T10

E7452
Touring case 2 x T10

E7453
Touring case 2 x T-SUB

E7455
Touring case 2 x T Flying frame
The d&b ArrayCalc simulation software

The d&b ArrayCalc simulation software is the prediction tool for d&b line arrays, column and point source loudspeakers as well as subwoofers. This is a comprehensive toolbox for all tasks associated with acoustic design, performance prediction, alignment, rigging and safety parameters. For safety reasons d&b line arrays must be designed using the ArrayCalc simulation software. ArrayCalc is available as a native stand-alone application for both Microsoft Windows (Win7 or higher) and Mac OS X (10.7 or higher) operating systems. In combination with the d&b Remote network, this can significantly reduce setup and tuning time in mobile applications and allows for precise simulations when planning installations. Listening planes can be defined in the venue tab, creating a three dimensional representation of any audience area in a given venue. This can also include balconies, side stalls, arenas, in the round scenarios or festivals. Special functions assist in obtaining accurate dimensions with laser distance finders and inclinometers.

Simulation

Up to forty flown arrays or subwoofer columns can be defined in a project file as single hangs or in pairs. A selection of d&b point source loudspeakers can also be fully integrated as well as a ground stacked SUB array consisting of up to eighty positions. All can be freely positioned according to their intended application, for example as main hang, outfill, nearfill or delay. Position, orientation, aiming and coverage details are displayed. Level over distance is calculated for each source with high resolution in real time, for either band limited or broadband input signals. The comprehensive simulation precisely models the actual performance of the system, taking into account input level, all system configuration options (such as CUT, CPL, HFC or INFRA), limiter headroom and air absorption. Acoustic obstacles, such as video screens, can be added to a model. Acoustic shadowing, whether by these obstacles, or a balcony overhang, is taken into consideration. The load status of all array rigging components is calculated accurately and displayed to determine whether a given array is within the load tolerance. Subwoofer array design is assisted by coverage and polar plot prediction. A specialized algorithm allows the user to specify subwoofer positions and a coverage angle, which is then converted into appropriate delay targets over the listening areas can be defined while specific level drops or offsets can be applied to certain areas, to assign reduced level zones. ArrayProcessing applies a combination of FIR and IIR filters to each individual cabinet in an array to achieve the targeted performance, with an additional latency of only 59 ms. This significantly improves the linearity of the response over distance as well as seamlessly correcting for air absorption. In addition, ArrayProcessing employs the same frequency response information for positioning and flying a d&b audiotechnik loudspeaker system on a mobile device. Once the system has been designed, calculated and optimized, all relevant project information can be shared via email, AirDrop, or downloaded onto any iOS or Android device.

ArrayProcessing

The optional ArrayProcessing function applies powerful filter algorithms to optimize the tonal (spectral) and level (spatial) performance of a line array column over the audience area defined by its mechanical vertical coverage angle. Within the ArrayCalc simulation software, spectral and level performance targets over the listening areas can be defined while specific level drops or offsets can be applied to certain areas, to assign reduced level zones. ArrayProcessing applies a combination of FIR and IIR filters to each individual cabinet in an array to achieve the targeted performance, with an additional latency of only 59 ms. This significantly improves the linearity of the response over distance as well as seamlessly correcting for air absorption. In addition, ArrayProcessing employs the same frequency response information for positioning and flying a d&b audiotechnik loudspeaker system on a mobile device. Once the system has been designed, calculated and optimized, all relevant project information can be shared via email, AirDrop, or downloaded onto any iOS or Android device.

R1 Remote Control Software

R1 uses the same project file created by ArrayCalc and generates an intuitive graphical user interface including complete details of the simulated system, loudspeakers, amplifiers, remote IDs, groups, ArrayProcessing data and all configuration information. This workflow removes the need to manually transfer data from one software program to the other.

Both simulations reflect changes in delay time to the single sources in real time. The ArrayCalc Simulation Software is available at www.dbaudio.com, along with further information and video tutorials.

Prediction

The level distribution resulting from the interaction of all active sources can be mapped onto the audience areas in a three-dimensional view, which can also be zoomed, rotated and exported as a graphics file. EASE and DXF data export capabilities are also available. A rigging plot with all necessary coordinates, dimensions and weights of arrays is generated for export and printing and a parts list, detailing all components required. The d&b ArrayCalc Viewer app presents this key information for positioning and flying a d&b audiotechnik loudspeaker system on a mobile device. Once the system has been designed, calculated and optimized, all relevant project information can be shared via email, AirDrop, or downloaded onto any iOS or Android device.

ArrayProcessing

The optional ArrayProcessing function applies powerful filter algorithms to optimize the tonal (spectral) and level (spatial) performance of a line array column over the audience area defined by its mechanical vertical coverage angle. Within the ArrayCalc simulation software, spectral and level performance targets over the listening areas can be defined while specific level drops or offsets can be applied to certain areas, to assign reduced level zones. ArrayProcessing applies a combination of FIR and IIR filters to each individual cabinet in an array to achieve the targeted performance, with an additional latency of only 59 ms. This significantly improves the linearity of the response over distance as well as seamlessly correcting for air absorption. In addition, ArrayProcessing employs the same frequency response information for positioning and flying a d&b audiotechnik loudspeaker system on a mobile device. Once the system has been designed, calculated and optimized, all relevant project information can be shared via email, AirDrop, or downloaded onto any iOS or Android device.
The d&b NoizCalc immission modelling software

The d&b software uses international standards to model the far field noise immission from multiple complex and coherently emitting sources such as line arrays and subwoofer arrays. More and more, gaining permission and licenses to stage live open air events requires an official statement with a prediction of how noise could impact on the surrounding area. NoizCalc takes all complex loudspeaker data and a reference point from the d&b ArrayCalc simulation software and calculates the sound propagation and relative attenuation values towards the far field for a certain scenario with particular meteorological conditions for one or more d&b loudspeaker systems.

A 3D terrain map imported from Google Maps or Street View displays the calculated immission on the areas surrounding the audience listening zones. This visual representation shows the actual system performance in the far field, enabling users to optimize for listeners while satisfying local noise restrictions and offsite regulations.

To ensure reliable results, NoizCalc includes all complex data concerning the addition and subtraction of sound waves, including phase information to describe the combination and interaction effects within a loudspeaker system consisting of multiple line arrays, subwoofer arrays and delay systems.

NoizCalc models immissions in the far field according to the internationally accepted ISO 9613-2 or Nord2000 calculation standards. Ground characteristics can be set depending on the absorbency or reflectivity of surfaces, while areas with volume attenuating properties can be defined. Buildings can be included, and the maximum reflection order option adjusts how many reflections are calculated. Parameters for humidity, air pressure and temperature ensure that the correct air absorption figures are accounted. The ISO 9613-2 standard requires limited meteorological information and assumes a worst-case scenario. The more sophisticated propagation model, Nord2000 enables a more precise handling of meteorological conditions allowing the user to model with prevailing wind information. The d&b NoizCalc immission modelling software is available at www.dbaudio.com for registered download, along with further information and video tutorials. It was developed in collaboration with SoundPLAN, a specialist software developer for environmental noise prediction.

The d&b R1 Remote control software

The remote control capability of the d&b Remote Network enables central control and monitoring of a complete d&b loudspeaker system from anywhere in the network, be it from a computer in the control room, at the mix position, or on a wireless tablet in the auditorium. This central access to all functions throughout the d&b Remote Network unlocks the full potential of the d&b system approach. In a typical user workflow, the d&b Remote Network takes settings optimized in the d&b ArrayCalc simulation software and applies these to all the amplifiers within the network.

All functions and controls available on the front panel of d&b amplifiers may be remotely controlled and/or monitored using the d&b R1 Remote control software. This allows each channel of the amplifier to be controlled and enables the creation of groups of loudspeakers. When grouped together, a button or fader can control the overall system level, zone level, equalization and delay, power ON/OFF, MUTE, as well as loudspeaker specific function switches such as CUT/HFA/HFC and CPL. An offline mode is provided for preparation in advance of an event, without the amplifiers being present or connected.

d&b System check verifies that the system performs within a predefined condition, while the Array verification function automatically identifies the physical position of a loudspeaker in an array to check that the system is cabled correctly. Extensive facilities for storing and recalling system settings are provided allowing these to be repeated, as and when required. For mobile applications, project files can be easily adjusted for use with a different set of equipment at another location.

In installation projects the R90 touchscreen remote control can be used for quick and reliable operation of day-to-day functions of a pre-configured d&b system without needing expert level knowledge of audio. The built-in 7" panel PC provides users with one-touch control over power, mute, level, grouping and recall of up to nine AmpPresets, entirely independent of R1.

The R1 software is optimized for use with touch screen, mouse and keyboard and runs on both Microsoft Windows® (Win7 or higher) and Mac OS X® (10.7 or higher).

Further information is provided in the d&b Amplifier and Software brochure which is available for download at www.dbaudio.com.

1 Microsoft Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
2 Mac OS X is a trademark of Apple Inc., registered in the U.S. and other countries.
The d&b amplifiers

The d&b amplifiers are designed specifically to power d&b loudspeakers and are the beating heart of the d&b System Reality. As such, they incorporate Digital Signal Processing for comprehensive loudspeaker management, switchable filter functions, remote capabilities and user-definable controls, to fulfill the exact needs of each application. Every loudspeaker configuration combines comprehensive system limiting, and equalization and crossover settings to ensure consistent results and optimal performance. d&b amplifiers offer different output configurations for different loudspeaker setups, including Dual Channel mode, for passive setups, Mix TOP/SUB mode, in which two channels are driven through a single output connector, and 2-Way Active mode, which also sends the output of two channels down one connector to drive appropriate loudspeakers actively.

The d&b switch functions provide selected filters to precisely tailor a wide variety of setups to their applications. Examples of these switch functions are the CSA (Cardioid Subwoofer Array) mode, to attenuate the high frequencies of a loudspeaker to mimic the effect of far field listening. These devices offer extended, user-definable equalization and delay capabilities, eliminating the need for external processing devices in the signal chain. All d&b amplifiers integrate with the d&b Remote network to enable the remote control and management of systems from anywhere within a network. Further information is provided in the d&b Amplifier and Software brochure which is available for download at www.dbaudio.com.

Comparison of the d&b amplifiers

<table>
<thead>
<tr>
<th>D20</th>
<th>D30</th>
<th>D10</th>
<th>D6</th>
<th>D80</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>Encoder/colour TFT touchscreen</td>
<td>LED indicators</td>
<td>LED indicators</td>
<td>Encoder/1C display</td>
</tr>
<tr>
<td>Output channels</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Input channels</td>
<td>4 x AES3 or 4 x analog or 2 x AES3 and 2 x analog</td>
<td>4 x AES3 and 4 x analog</td>
<td>4 x AES3 and 4 x analog</td>
<td>2 x AES3 or 2 x analog</td>
</tr>
<tr>
<td>Latency</td>
<td>0.3 msec</td>
<td>0.3 msec</td>
<td>0.3 msec</td>
<td>0.3 msec</td>
</tr>
<tr>
<td>User equalizers (per channel)</td>
<td>2 x 16-band</td>
<td>2 x 16-band</td>
<td>2 x 16-band</td>
<td>4-band</td>
</tr>
<tr>
<td>Delay</td>
<td>10 sec/3440 m</td>
<td>10 sec/3440 m</td>
<td>10 sec/3440 m</td>
<td>340 msec/116.9 m</td>
</tr>
<tr>
<td>Maximum output power (THD+N < 0.5%, 12 dB crest factor)</td>
<td>2 x 800 W into 8 ohms</td>
<td>2 x 800 W into 8 ohms</td>
<td>2 x 350 W into 8 ohms</td>
<td>2 x 350 W into 8 ohms</td>
</tr>
<tr>
<td>Output routing</td>
<td>Dual Channel, Mix TOP/SUB 2-Way Active</td>
</tr>
<tr>
<td>Output connectors</td>
<td>NL4 plus central NL8 Phoenix Euroblock Phoenix Euroblock</td>
<td>NL4 Phoenix Euroblock Phoenix Euroblock</td>
<td>NL4 Phoenix Euroblock</td>
<td>NL4 Phoenix Euroblock</td>
</tr>
<tr>
<td>GPIO connector, 5 ports</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Power supply compensation</td>
<td>LoadMatch</td>
<td>LoadMatch</td>
<td>LoadMatch</td>
<td>No</td>
</tr>
<tr>
<td>Power supply</td>
<td>Universal range switched mode power supply with active PFC</td>
<td>Universal range switched mode power supply with active PFC</td>
<td>Universal range switched mode power supply with active PFC</td>
<td>Autosensing switched mode power supply with active PFC</td>
</tr>
<tr>
<td>Mains voltage</td>
<td>100 - 240 V, 50 - 60 Hz</td>
<td>100 - 240 V, 50 - 60 Hz</td>
<td>100 - 240 V, 50 - 60 Hz</td>
<td>100 - 120/220 - 240 V, 50 - 60 Hz</td>
</tr>
<tr>
<td>Weight (kg/lb)</td>
<td>10.8/23.8</td>
<td>10.6/23.4</td>
<td>10.6/23.4</td>
<td>8/17.6</td>
</tr>
<tr>
<td>Dimensions</td>
<td>2 RU x 19” x 460 mm</td>
<td>2 RU x 19” x 435 mm</td>
<td>2 RU x 19” x 435 mm</td>
<td>2 RU x 19” x 353 mm</td>
</tr>
</tbody>
</table>

Airflow

24 d&b T-Series

d&b T-Series 25
The controller setups and operation with d&b amplifiers

Arc, Line and P5 (point source) mode
The Line or Arc modes are selected when the T10 and Ti10L loudspeakers are used as a line array. The chosen configuration will depend on the curvature of the array. The Line configuration is selected when groups of four or more cabinets are coupled in a straight long throw array section, where the splay angles to adjacent cabinets are 0° to 2°. The Arc configuration is selected when cabinets are used in curved array sections, where the splay angles to adjacent cabinets are 3° or more. Within a typical array both amplifier configurations are used. The P5 configuration is selected when the Ti10P is used in either horizontal or vertical orientation or the T10 is used as a single spherical loudspeaker.

CUT mode
Set to CUT, the cabinet low frequency level is reduced and is configured for use with d&b active subwoofers.

HFC mode
Selecting the HFC (High Frequency Compensation, Line or Arc mode only) mode compensates for loss of high frequency energy due to absorption in air when loudspeakers are used to cover for field listening positions. The HFC mode has two different settings, which should only be used for those cabinets covering the following respective distances: HFC1 for distances between 25 m (80 ft) and 50 m (160 ft), and HFC2 for distances further than 50 m (160 ft). This enables the correct sound balance between close and remote audience areas, whilst all amplifiers driving the array can be fed with the same signal.

HFA mode
Selecting HFA mode (High Frequency Attenuation, PS setup only), the HF response is rolled off. The HFA provides a natural, balanced frequency response when a unit is placed close to listeners in near field or delay use. HFA begins gradually at 1 kHz, dropping by approximately 3 dB at 10 kHz. This roll off mimics the decline in frequency response experienced when listening to a system from a distance in a typically reverberant room or auditorium.

CPL function
The CPL (Coupling) function compensates for coupling effects between closely coupled cabinets by reducing the low and mid frequency level. CPL begins gradually at 1 kHz, with the maximum attenuation below 400 Hz, providing a balanced frequency response when cabinets are used in arrays of four or more. The CPL function can be set in dB attenuation values between –9 and 0, or a positive CPL value which creates an adjustable low frequency boost around 65 Hz (0 to +5 dB).

100 Hz mode
The 100 Hz mode limits the upper operating frequency of the subwoofer to 100 Hz, complementing top cabinets in full range mode.

Recommended amplifiers for mobile applications

<table>
<thead>
<tr>
<th>T10</th>
<th>T-SUB</th>
<th>B4-SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Recommended amplifiers for installation applications

<table>
<thead>
<tr>
<th>T10</th>
<th>Ti10L</th>
<th>T10P</th>
<th>T-SUB/ Ti-SUB</th>
<th>B4-SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Maximum loudspeakers per amplifier channel

<table>
<thead>
<tr>
<th>T10</th>
<th>Ti10L</th>
<th>T10P</th>
<th>T-SUB/ Ti-SUB</th>
<th>B4-SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Available controller settings

<table>
<thead>
<tr>
<th>T10</th>
<th>Ti10L</th>
<th>T10P</th>
<th>T-SUB/ Ti-SUB</th>
<th>B4-SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc, Line</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>P5</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUT</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>HFC</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>HFA</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>CPL</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>100 Hz</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

The T-Series frequency responses

![T10 line source/Ti10L standard and CUT (single cabinet)](image1)

![T10 point source/Ti10P standard and CUT](image2)

![T-SUB standard and 100 Hz](image3)

![B4-SUB standard and 100 Hz](image4)

![Correction of HFC](image5)

![Correction of HFA](image6)
The d&b amplifier output modes

The DS10 and DS20 Audio network bridges
The DS100 Signal Engine

DS10 Audio network bridge
The DS10 Audio network bridge interfaces between Dante networks and AES3 digital audio signals, while also providing distribution of Ethernet control data. Positioned within the signal chain in front of the amplifiers, this 1 RU device expands the d&b system approach. Each unit can deliver up to sixteen Dante network channels via AES3 digital signal outputs. Additionally, four AES3 input channels provide access to the Dante audio network for applications such as a break-in from a front of house console. The DS10 incorporates an integrated 5-port switch, offering a primary and redundant network for the Dante protocol, as well as advanced functions such as Multicast Filtering and VLAN modes. Using the DS10 Audio network bridge, audio signals and remote control data can be combined using a single Ethernet cable.

DS20 Audio network bridge
The DS20 Audio network bridge supports the open standards-based Milan protocol rather than Dante. Milan (Media integrated local area networking) is a high level interoperability solution based on Audio Video Bridging (AVB) technology. The main advantages are deterministic behaviour (zero network congestion); improved reliability; optimum synchronization and hassle free network setup, as no special settings, such as QoS, need to be set within the switches to ensure delivery.

DS100 Signal Engine
The d&b DS100 Signal Engine is the platform underneath the Soundscape, based on a specialized rack mount 3 RU audio processor with Audinate Dante networking. It provides a 64 x 64 audio matrix with level and delay adjustments at all cross points. Additional software modules provide dynamic source positioning and emulated acoustics functions. The DS100 is a versatile tool for use within complex audio systems to route and distribute multiple audio channels to numerous amplifiers driving loudspeaker positions and zones, show relay and break out rooms. The networking capabilities with a Dante enabled processor are significant, particularly for busy, multiroom complexes. The DS100 completely integrates with the overall d&b system approach, including loudspeakers, amplifiers, rigging, transport and networking accessories and the DS10 Audio network bridge. The complete system is designed and optimized in the d&b ArrayCalc simulation software, and controlled via the d&b R1 Remote control software.
The T-Series configuration examples

T10 loudspeakers in point source orientation on B4-SUBs with a D20 amplifier in Mix TOP/SUB mode.

T10 loudspeakers on 27S-SUBs with a 30D amplifier in Dual Channel mode.

T10 line array on B4-SUBs ground stacked in left/right configuration with D20 amplifier in Mix TOP/SUB mode and T10s as frontfill and delay with D20 amplifier in Dual Channel mode.

T10L line array on 27S-SUBs with a 30D amplifier in Dual Channel mode.

1 These configuration examples are also valid for Ti loudspeakers.
The T-Series configuration examples

T10 flown line arrays in left/right configuration and centre cluster with T10 frontfills and ground stacked B4-SUBs on D20 amplifiers in Dual Channel mode

T10 flown line arrays in left/right configuration and ground stacked B4-SUB array with D20 amplifiers in Dual Channel mode

1 These configuration examples are also valid for Ti loudspeakers
The T-Series cables and adapters MC8 / MC4

Amplifiers in Dual Channel mode

- **Z5570 / Z5571.xxx** 3 x D80 touring rack
- **Z5560 / Z5561.xxx** 3 x D30 touring rack
- **Z5345.001** Adapter 4 x NL4 to NL8M
- **Z3293.001** T Splitter NL4 on amplifier
- **Z3293.002** T Splitter NL4 F/M on amplifier
- **Z3543.000** MC8 Cable NL8 F/M
- **Z3544.000** Adapter NLT8F to 4 x NL4
- **Z3544.001** Adapter NLT8F to 4 x NL4M
- **Z3544.002** Adapter NLT8F to 4 x NL78M
- **Z3547.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z3547.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z3540.xxx** MC4 Cable NLT4 F/M
- **Z3547.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z3547.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z2292.001** T Splitter NL4 on amplifier
- **Z2292.002** T Splitter NL4 F/M on amplifier
- **Z2293.001** T Linktset NL4 on loudspeaker
- **Z2293.002** T Linktset NL4 F/M on loudspeaker
- **Z2297.xxx** MC4SD Cable NL4
- **Z2299.xxx** MC2.5 Cable NL4 F/F
- **Z3297.xxx** MC4SD Cable EPS
- **Z2299.xxx** MC2.5 Cable NL4 F/F
- **Z2299.xxx** MC2.5 Cable NL4 F/F
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
- **Z5340.xxx** MC4 Cable NLT4 F/M
- **Z5344.000** Adapter NLT8F to 4 x NL4
- **Z5344.001** Adapter NLT8F to 4 x NL4M
- **Z5344.002** Adapter NLT8F to 4 x NL78M
- **Z5347.000** Breakoutbox NLT8 F/M to 6 x EP5
- **Z5347.001** Breakoutbox NLT8 F/M to 6 x NL4
The T-Series cables and adapters MC24 - LKA25 / MC8

Amplifiers in Dual Channel mode

Z5570 / Z5571.xxx
OUT: LKA25F / 3 x NL8

Z5576
D80 Touring rack assembly
OUT: 2 x LKA25F / 6 x NL8

Z5326.xxx
MC24 LKA25 F/M Multicore

Z5343.xxx
MC8 Cable NLT8 F/M

Z5347.001
Breakoutbox NLT8 F/M to 6 x NL4

Z5347.000
Breakoutbox NLT8 F/M to 6 x EPS

Z5343.xxx
MC8 Cable NLT8 F/M

Z5340.xxx
MC4 Cable NLT4 F/M

Z5327.000
Adapter LKA25M to 12 x NL4M

Z2297.xxx
MC4SD Cable EPS

Z5570 / Z5571.xxx
OUT: LKA25F / 3 x NL8
The T-Series product overview

Amplifiers
- Z2750.xxx: D20 amplifier²
- Z2770.xxx: 30D amplifier²
- Z2760.xxx: 10D amplifier²
- Z2700.xxx: D6 amplifier²
- Z2710.xxx: D80 amplifier²

Processing and distribution
- Z4010.000: DS10 Audio network bridge
- Z4011.000: DS20 Audio network bridge
- Z4100.000: DS100 Signal Engine

Amplifier rack assemblies
- Z5560.xxx: 3xD20 Touring rack⁶
- Z5561.xxx: 3xD20 Touring rack (includes DS10)⁶
- Z5330.xxx: D80 Touring rack¹
- Z5562.xxx: D80 Touring rack (includes DS10)⁶

Amplifier racks
- E7480.000: D20 Touring rack 2 RU, 19" SD, shock mounted, handles
- E7468.000: D80 Touring rack 2 RU, 19" SD, shock mounted, handles
- E7483.000: DS100 Touring rack 3 RU, 19" SD, shock mounted, handles

Cables and adapters
- Z5390.000: Multichannel extension cable
- Z5343.xxx: MC8 Cable NL8 F/M
- Z5345.001: Adapter 4 x NL4 to NL8M
- Z5344.002: Adapter NL8F to 4 x NL4M
- Z5344.001: Adapter NL8F to 4 x NL4
- Z5347.001: Breakoutbox NL8 F/M to 6 x NL4
- Z5347.000: Breakoutbox NL8 F/M to 6 x EP5
- Z5340.xxx: MC4 Cable NL4 F/M
- Z2299.000: T Linkset NL4
- Z2292.002: T Splitset NL4 F/M
- Z2292.001: T Splitset NL4
- Z2292.000: T Splitset EP5
- Z2299.001: T Linkset NL4
- Z5763.000: WR 5.5m cable 2x2.5mm²⁷

Remote network
- Z6118.000: R60 USB to CAN interface
- Z6124.000: R70 Ethernet to CAN interface

1. WR only for T loudspeakers, on request
2. SC only for T loudspeakers
3. SC on request
4. The complete list of mobile amplifier versions is available in the d&b D Amplifier and Software brochure
5. The complete list of installation amplifier versions is available in the d&b xD Installation Amplifier and Software brochure
6. Further information is available in the d&b D Amplifier and Software brochure
7. Other lengths on request